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Abstract

A new viewpoint for the gauge hierarchy problem is proposed: compactification at a

large scale, 1/R, leads to a low energy effective theory with supersymmetry softly broken

at a much lower scale, α/R. The hierarchy is induced by an extremely small angle α

which appears in the orbifold compactification boundary conditions. The same orbifold

boundary conditions break Peccei-Quinn symmetry, leading to a new solution to the µ

problem. Explicit 5d theories are constructed with gauge groups SU(3) × SU(2) × U(1)

and SU(5), with matter in the bulk or on the brane, which lead to the (next-to) minimal

supersymmetric standard model below the compactification scale. In all cases the soft

supersymmetry-breaking and µ parameters originate from bulk kinetic energy terms, and

are highly constrained. The supersymmetric flavor and CP problems are solved.

http://arXiv.org/abs/hep-ph/0106190v3


1 Introduction

Data from precision electroweak experiments, which includes evidence in favor of a light Higgs

boson, have made weak scale supersymmetry the leading candidate for a theory beyond the stan-

dard model. Weak scale supersymmetry provides a solution to the gauge hierarchy problem, a

radiative electroweak symmetry breaking mechanism with a light Higgs boson, and a successful

prediction for the weak mixing angle. The critical question for weak scale supersymmetry is:

what breaks supersymmetry? In many schemes this is accomplished in 4d by the dynamics of

some new strong gauge force. In this paper we explore an alternative possibility: the breaking

of supersymmetry by boundary conditions in compact extra dimensions [1]. While such a mech-

anism has been known for many years, it has rarely been applied to realistic models. Models

which have been constructed [2, 3, 4, 5, 6, 7, 8, 9], have taken the view that the compactifica-

tion scale 1/R is of order a TeV, and that beneath this scale supersymmetry is broken. Thus

the picture is of a transition at 1/R from a d > 4 supersymmetric theory directly to a d = 4

non-supersymmetric effective theory. There is never an energy interval in which there is an

effective 4d supersymmetric field theory. Such schemes are extremely exciting, as they predict

that both Kaluza-Klein (KK) modes and superpartners will be discovered by colliders at the TeV

scale. However, in these schemes supersymmetry is apparently not related to the gauge hierarchy

problem, and logarithmic gauge coupling unification is not possible.

In this paper we demonstrate that there is an alternative implementation of boundary con-

dition supersymmetry breaking: the boundary conditions may involve very small dimensionless

parameters, α, so that supersymmetry is broken at α/R rather than 1/R. In this scheme the tran-

sition at scale 1/R is from a 5d supersymmetric theory to a 4d supersymmetric theory with highly

suppressed supersymmetry breaking interactions. In the energy interval from 1/R to α/R physics

is described by a softly broken 4d supersymmetric theory, such as the minimal supersymmetric

standard model. This new viewpoint gives a new origin for the soft supersymmetry-breaking

parameters in terms of orbifold compactification boundary conditions at very high energies. For

1/R sufficiently high, supersymmetry is relevant for solving the gauge hierarchy problem and

logarithmic gauge coupling unification may occur. We do not claim this as a new solution to the

gauge hierarchy problem, as we have not understood why the parameter α is so small, but we

are hopeful that this new view of the problem may lead to a new solution.

In this paper we restrict our analysis to the simplest case of a single compact extra dimen-

sion, in which case there is a unique parameter, α, in the orbifold boundary condition which

breaks supersymmetry [10]. This parameter arises as a twisting of the fields under a translation

symmetry of the extra coordinate. In higher dimensions there will be further parameters. In 5d,

with a single extra dimension, even with arbitrary gauge and matter content of the theory, we are

guaranteed that the soft supersymmetry-breaking parameters depend on only two parameters:

α and 1/R.
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Realistic theories with supersymmetry in 4d must have two Higgs chiral multiplets, vectorlike

with respect to the standard model gauge group. Any such theory must address why these Higgs

doublets have survived to the low energy effective theory — why did they not get a large gauge

invariant mass? An obvious answer is that they are protected by a global symmetry GH —

either Peccei-Quinn symmetry or R symmetry. However, in this case one must address why

the level of GH breaking scale is comparable to that of supersymmetry breaking, as required

by phenomenology. We will solve these problems as follows. The Higgs fields propagate in the

bulk and are forbidden to have a bulk mass term by orbifold symmetry and GH . This same

orbifold symmetry is such that, on making a KK expansion, there are two zero-mode Higgs

doublets. The breaking of GH is accomplished by an orbifold boundary condition involving

a dimensionless twisting parameter γ. The relevant orbifold symmetry is precisely the same

translation of the extra coordinate that breaks supersymmetry and hence one naturally expects

γ ≈ α. There is a unification of the origin of supersymmetry and GH breaking, providing a novel

solution to the µ problem.

In the next section we study the case that the gauge group is SU(3)×SU(2)×U(1), so that

the orbifold breaks supersymmetry and global symmetry, but not gauge symmetry. We obtain

the form of the supersymmetry and GH breaking interactions, and study radiative electroweak

symmetry breaking, both for the case of quarks and leptons on a brane and in the bulk.

In section 3 we study the case that the gauge group is SU(5), and that the SU(5) gauge

symmetry is broken to that of the standard model by the same orbifold translation symmetry

that breaks both supersymmetry and GH . The gauge symmetry breaking is induced by a set of

parities and does not involve any small parameter, and hence occurs at the scale of 1/R. In the

limit α, γ → 0 this theory is the same as that studied in Refs. [11, 12]. Including non-zero values

for α, γ allows a unified view of gauge, global and supersymmetry breaking.

2 SU(3)×SU(2)×U(1) Model

In this section, we construct 5d theories which, at low energies, reduce to the minimal supersym-

metric standard model with specific forms of the soft supersymmetry-breaking parameters.

2.1 The model

The gauge group is taken to be SU(3)×SU(2)×U(1). The 5d gauge multiplet V = (AM , λ, λ′, σ)

is decomposed into a vector superfield V = (Aµ, λ) and a chiral superfield Σ = (σ+iA5, λ′) under

4dN = 1 supersymmetry. We also introduce two Higgs hypermultiplets Hi = (hi, h
c†
i , h̃i, h̃

c†
i ) (i =

1, 2) in the 5d bulk. Under 4d N = 1 supersymmetry, each of them is decomposed into two chiral

superfields Hi = (hi, h̃i) and Hc
i = (hc

i , h̃
c
i), where Hi and Hc

i have conjugated transformations
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under the gauge group. A large bulk mass term is forbidden by imposing a global symmetry GH

under which h̃1 and h̃c
2 transform in the same way.

The fifth dimension is compactified on the S1/Z2 orbifold, which is constructed by two iden-

tifications y ↔ −y and y ↔ y + 2πR. Under the first identification, y ↔ −y, the gauge and

Higgs fields are assumed to obey the following boundary conditions:

(

V

Σ

)

(xµ,−y) =

(

V

−Σ

)

(xµ, y), (1)

(

H1 H2

Hc†
1 Hc†

2

)

(xµ,−y) =

(

H1 −H2

−Hc†
1 Hc†

2

)

(xµ, y). (2)

This leaves only 4d N = 1 SU(3) × SU(2) × U(1) vector superfields and two Higgs chiral

superfields H1 and Hc
2 as zero-modes, upon compactifying to S1/Z2. All the other states have

masses of order 1/R. We also impose the following boundary conditions under y ↔ y + 2πR:

AM(xµ, y + 2πR) = AM(xµ, y), (3)
(

λ

λ′

)

(xµ, y + 2πR) = e−2πiασ2

(

λ

λ′

)

(xµ, y), (4)

σ(xµ, y + 2πR) = σ(xµ, y), (5)

(

h1 h2

hc†
1 hc†

2

)

(xµ, y + 2πR) = e−2πiασ2

(

h1 h2

hc†
1 hc†

2

)

e2πiγσ2(xµ, y), (6)

(

h̃1 h̃2

h̃c†
1 h̃c†

2

)

(xµ, y + 2πR) =

(

h̃1 h̃2

h̃c†
1 h̃c†

2

)

e2πiγσ2(xµ, y). (7)

where α and γ are continuous parameters, and σ1,2,3 are the Pauli spin matrices. Note that this is

the most general boundary condition under the S1/Z2 compactification with the present matter

content [10]; α and γ parameterize U(1) rotations which are subgroups of the SU(2)R symmetry

and flavor SU(2)H symmetry of the 5d action, respectively. The boundary conditions Eqs. (3

– 7) provide GH breaking, and induce the soft supersymmetry-breaking masses of O(α/R) and

the supersymmetric mass for the Higgs fields of O(γ/R) as we will see below.

This theory was first introduced with the viewpoint that α and γ are of order unity, so that the

theory below the compactification scale is the standard model rather than the supersymmetric

standard model [4]. This led to an emphasis of the phenomenology of the case γ = α, since only

in this limit was a light Higgs doublet obtained [6]. Here we stress that we are interested in the

very different viewpoint of α and γ being extremely small, so that there is a large energy interval

in which the theory is the minimal supersymmetric standard model.

We now consider the mode expansions for the various fields under the boundary conditions

Eqs. (3 – 7). Non-trivial decompositions are required for the gauginos, Higgs bosons and Higgsi-
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nos. They are given by

(

λ

λ′

)

(xµ, y) =
∞
∑

n=0

e−iασ2y/R

(

λn cos[ny/R]

λ′n sin[ny/R]

)

, (8)

(

h1 h2

hc†
1 hc†

2

)

(xµ, y) =
∞
∑

n=0

e−iασ2y/R

(

h1n cos[ny/R] h2n sin[ny/R]

hc†
1n sin[ny/R] hc†

2n cos[ny/R]

)

eiγσ2y/R, (9)

(

h̃1 h̃2

h̃c†
1 h̃c†

2

)

(xµ, y) =
∞
∑

n=0

(

h̃1n cos[ny/R] h̃2n sin[ny/R]

h̃c†
1n sin[ny/R] h̃c†

2n cos[ny/R]

)

eiγσ2y/R, (10)

where λn, λ
′
n, hin, h

c
in, h̃in and h̃c

in are 4d fields. On substituting these mode expansions into the

5d action and integrating out the heavy modes with masses of O(1/R), we obtain the 4d effective

Lagrangian below the scale of 1/R. It contains only the SU(3)×SU(2)×U(1) vector superfields

and two Higgs chiral superfields H1 and Hc
2, which we define as Hu ≡ H1,n=0 and Hd ≡ Hc

2,n=0.

In addition to the kinetic terms for these fields, there are mass terms coming from the boundary

conditions Eqs. (3 – 7),

L = −1

2

α

R
(λa

0λ
a
0 + h.c.)

−
(

α2

R2
+
γ2

R2

)

(|hu|2 + |hd|2) + 2
αγ

R2
(huhd + h.c.)

− γ

R
(h̃uh̃d + h.c.), (11)

where various fields are canonically normalized in 4d, and a runs over SU(3), SU(2) and U(1).

We find that the gaugino masses, soft supersymmetry-breaking masses for the Higgs bosons, the

supersymmetric Higgs mass (µ term) and the holomorphic supersymmetry-breaking Higgs mass

(µB term) are generated. Therefore, the low energy theory has the structure of the minimal su-

persymmetric standard model with various relations on the soft supersymmetry-breaking param-

eters. In particular, it determines the sign of the µ parameter in the basis where 〈hu〉 , 〈hd〉 > 0.

The interactions in Eq. (11) are such that, using conventional notation, the sign of µ is negative.

(In the conventional notation, a negative µ leads to a stronger constraint from b → sγ.) An

interesting point is that the sizes of α and γ are expected to be the same order, since the U(1)

symmetry used to twist the boundary condition under y ↔ y+ 2πR is a generic linear combina-

tion of two U(1) symmetries, U(1)R ⊂ SU(2)R and U(1)H ⊂ SU(2)H , associated with α and γ.

Therefore, this theory provides a natural solution to the µ problem.

Orbifold breaking has led to a soft rather than hard breaking of supersymmetry. When the KK

mode expansions of Eqs. (8, 9) are substituted into the kinetic energy, the y derivatives give α/R

and result in soft operators, while the 4d derivatives do not lead to supersymmetry breaking.1

1 We thank Alex Pomarol for pointing out our previous error on this point.
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The supersymmetry-breaking parameter α/R drops out of the 4d kinetic terms (kinetic terms

with ∂µ) because of SU(2)R invariance. It does not drop out of the bulk kinetic term (kinetic

terms with ∂y) because SU(2)R is a global symmetry, and the phase factors in Eqs. (8, 9) are y

dependent. The resulting supersymmetry breaking interactions are soft by dimensional analysis:

the derivative ∂y becomes the soft supersymmetry-breaking parameter. Hard supersymmetry

breaking effects do not arise from the minimal kinetic terms in the 5d bulk.

So far, we have considered the gauge and Higgs fields. How are quarks and leptons incorpo-

rated into the above theory? There are essentially two ways to introduce quarks and leptons into

the model: as fields on the brane or in the bulk. Here we concentrate on the case that the quarks

and leptons are placed on a fixed point of the S1/Z2 orbifold, which, without loss of generality,

we take to be at y = 0. The case of quarks and leptons in the bulk are considered in sub-section

2.3. Then, quark and lepton chiral superfields, Q,U,D, L and E, are introduced on the y = 0

brane, together with appropriate Yukawa couplings with the Higgs fields in the bulk,

S =
∫

d4x dy δ(y)
[
∫

d2θ (yuQUH1 + ydQDH
c
2 + yeLEH

c
2) + h.c.

]

. (12)

With these Yukawa couplings, the theory precisely reduces to the minimal supersymmetric stan-

dard model at low energies. Note that since the squarks and sleptons are brane fields, their

masses are not generated by the orbifolding; soft supersymmetry-breaking masses for squarks

and sleptons are essentially zero at the scale of 1/R. However, they are radiatively generated

through renormalization group equations below the scale of 1/R. Since the radiative corrections

are almost flavor universal, the supersymmetric flavor problem is solved in this model.

To summarize, the present model gives the minimal supersymmetric standard model at low

energies, with a constrained form of soft supersymmetry-breaking parameters. They are given,

at the scale 1/R, by

m1/2 = α̂ ≡ α/R, (13)

m2
hu,hd

= α̂2, m2
q̃,ũ,d̃,l̃,ẽ

= 0, A = −α̂, (14)

µ = γ̂ ≡ γ/R, µB = −2α̂γ̂. (15)

where m1/2 represents the universal gaugino mass and A the trilinear scalar couplings. The

predicted sign of A is such that, on scaling to the infrared, |A| is increased by the radiative

contribution from the gaugino mass. Here, we have neglected threshold effects coming from

finite radiative corrections at 1/R. In this expression, while the compactification radius R is

an arbitrary parameter, α̂ and γ̂ must be around the weak scale for the supersymmetry to be

relevant as a solution to the gauge hierarchy problem. One interesting consequence of Eq. (13)

is that the gaugino masses are unified at the scale 1/R. This arises because in 5d the most

general orbifolding admits only a single parameter which breaks supersymmetry. In general the

compactification scale differs from the unification scale, so that the gaugino masses do not unify
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at the grand unification scale. By construction, all the above quantities are necessarily real, so

that there is no supersymmetric CP problem. Below, we consider all the range of 1/R from the

weak to the Planck scale, treating α̂ and γ̂ as free parameters of the order of the weak scale.

2.2 Radiative electroweak symmetry breaking

Having obtained soft supersymmetry-breaking parameters, Eqs. (13 – 15), at the compactification

scale, we can solve renormalization group equations to obtain the spectrum at the weak scale. In

particular, we can work out whether radiative electroweak symmetry breaking occurs correctly

or not. In this sub-section, we will consider the constraint from radiative electroweak symmetry

breaking and find that it gives a restriction on the values for 1/R, α̂ and γ̂.

The minimization of the Higgs potential gives two relations,

m2
Z

2
=

tan2 β m2
hu

−m2
hd

1 − tan2 β
− |µ|2, (16)

sin(2β) = − 2µB

m2
hu

+m2
hd

+ 2|µ|2 , (17)

where various quantities must be evaluated at the weak scale. Using these equations, we can

relate two parameters α̂ and γ̂ with tanβ ≡ 〈hu〉 / 〈hd〉 and v ≡
√

〈hu〉2 + 〈hd〉2. Since v is fixed

by the observed Fermi constant, there are two remaining free parameters which we take to be

1/R and tanβ. Below, we consider the constraint on this two dimensional parameter space from

electroweak symmetry breaking. We look for solutions of Eqs. (16, 17) with tanβ >∼ 2, to satisfy

the experimental lower bound on the physical Higgs boson mass.

A characteristic feature of the soft supersymmetry-breaking parameters given in Eqs. (13 –

15) is a sizable non-vanishing value for the µB parameter. The µB parameter pushes the value

of tan β towards 1. Thus we want to reduce the effect of the µB parameter relative to that of

the other parameters, which requires a hierarchy between the two parameters α̂ and γ̂. This can

be seen easily as follows. Suppose, as a zero-th order approximation, that only m2
hu

is changed

through renormalization group evolution from 1/R to the weak scale. Then, relevant parameters

are given by m2
hu

= (1 − c)α̂2, m2
hd

= α̂2, µ = γ̂ and µB = −2α̂γ̂ at the weak scale. Here, c

parameterizes the renormalization scaling induced by the top Yukawa coupling, and depends on

1/R and tanβ through the distance of renormalization group running and the size of the top

Yukawa coupling, respectively. After this scaling, Eq. (17) becomes

tanβ

1 + tan2 β
≃ α̂γ̂

(1 − c/2)α̂2 + γ̂2
, (18)

and tan β ≫ 1 requires either α̂/γ̂ ≪ 1 or γ̂/α̂≪ 1. Although the above argument is very rough,

numerical computations confirm that successful electroweak symmetry breaking with tanβ >∼ 2

requires a hierarchy between α̂ and γ̂ of typically an order of magnitude.
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We first consider the case α̂/γ̂ ≪ 1. In this case, electroweak symmetry breaking does

not occur, since the supersymmetric mass term for the Higgs fields is much larger than the

supersymmetry-breaking masses which would trigger the electroweak symmetry breaking. In

other words, the right-hand side of Eq. (16) formally gives a negative value and is unphysical.

Thus we concentrate on the case γ̂/α̂ ≪ 1 from now on. With γ̂/α̂ ≪ 1, the values for α̂

and γ̂ are given by γ̂ ≪ α̂ ∼ mZ in a generic region of the parameter space, so that it is not

phenomenologically acceptable. This can be easily seen by noting that Eq. (16) reduces, with

moderately large values for tanβ, to

m2
Z

2
≃ −(1 − c)α̂2 − γ̂2, (19)

in the approximation adopted in Eq. (18). However, Eq. (19) also provides the way to avoid this

problem. If (c − 1)α̂2 ≃ γ̂2, which means c ≃ 1, we can obtain γ̂ ∼ mZ or even larger values

for γ̂. Then, since c depends on both 1/R and tan β, c ≃ 1 gives one constraint on these values:

a phenomenologically acceptable parameter region is a line in the two dimensional parameter

space spanned by 1/R and tanβ.

The actual dependence of c on 1/R and tan β is somewhat complicated, and also the approx-

imation in Eq. (18) is not very precise. Thus we have evaluated the allowed region by numerical

computations, including full renormalization group effects at the two-loop level. We find that

the allowed region is a curved line, which extends from (1/R, tanβ) ∼ (2 × 106 GeV, 2) through

(1/R, tanβ) ∼ (3 × 107 GeV, 5) to (1/R, tanβ) ∼ (6 × 107 GeV, 20). The thickness of this line

is given by δ(tan β)/ tanβ ∼ 5%, with a fixed value of 1/R. This behavior is easily understood

in terms of the correlation between 1/R and tan β required to maintain c close to unity. If 1/R

is below 2 × 106 GeV, the running distance is short so that c ≃ 1 requires fairly large values

for the top Yukawa coupling, corresponding to tanβ <∼ 2. Thus there is no phenomenologically

acceptable parameter region for 1/R <∼ 2× 106 GeV. Once 1/R is increased above 2× 106 GeV,

an allowed parameter region emerges, giving correct radiative electroweak symmetry breaking

with tanβ >∼ 2. As 1/R is further increased, the running distance also increases, and thus c ≃ 1

requires smaller values of the top Yukawa coupling, corresponding to larger tanβ. Thus the al-

lowed parameter region extends to the upper right direction in the (1/R, tanβ) plane. However,

the top Yukawa coupling cannot be made arbitrary small, since its dependence on tanβ is very

weak for tanβ >∼ 20, leading to an upper bound: 1/R <∼ 6 × 107 GeV.

In the region discussed above, the low energy B parameter is large, reflecting the large value

at the compactification scale. However, the sign of A is such that the magnitude of B is reduced

during evolution to the infrared; hence for large enough 1/R we find an acceptable region with a

low value for B at the weak scale. This requires 1/R >∼ 1014 GeV, in which case we find successful

electroweak symmetry breaking occurs only for tanβ near 2. Since γ̂/α̂ is now of order unity,

there is no need for c ≃ 1. However, for tanβ ≃ 2, a sufficiently heavy Higgs boson only results
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for heavy squarks, so α̂ must be large. Hence some cancellation between the α̂2 and γ̂2 terms

are required in Eq. (19).

In summary, we have found two regions of parameter space where correct electroweak sym-

metry breaking occurs in the present model. In one region, the compactification scale is tightly

constrained, 2 × 106 GeV <∼ 1/R <∼ 6 × 107 GeV, while a broad region of tanβ, 2 <∼ tanβ <∼ 20,

can be realized depending on the value of 1/R. This somewhat unusual result is a consequence

of the sizable µB parameter at the compactification scale. In the other region, 1/R >∼ 1014 GeV

and tanβ ≃ 2.

The above constraint on 1/R and tan β is derived by considering only the usual logarithmic

renormalization group evolutions. There are also finite one-loop radiative corrections to the soft

supersymmetry-breaking parameters that do not involve a log factor. In a 5d calculation, these

appear as threshold effects at 1/R. In the 4d picture this corresponds to including supersymmetry

breaking effects from higher KK modes. These contributions are expected to be of O(α̂2/16π2)

and thus smaller than those calculated above by an amount of order 1/ ln(1/α). To find whether

they are negligible or significant, however, a full one-loop calculation must be done to include the

effects of the heavier modes of the KK tower so that a finite answer is obtained. In the case that

the usual logarithmic term dominates, the allowed range of 1/R quoted above will be unchanged.

Finally, we comment on the effect of brane-localized kinetic terms for the Higgs fields,

S =
∫

d4x dy δ(y)
∫

d4θ
(

ZuH
†
uHu + ZdH

†
dHd

)

. (20)

This changes the Higgs potential and Higgsino mass given in Eq. (11) to

L = −
(

α′2
u

R2
+
γ′2

R2

)

|hu|2 −
(

α′2
d

R2
+
γ′2

R2

)

|hd|2

+
(α′

u + α′
d)γ

′

R2
(huhd + h.c.) − γ′

R
(h̃uh̃d + h.c.). (21)

Here, α′
u, α

′
d and γ′ are given by

α′
u =

α

1 + zu
, α′

d =
α

1 + zd
, γ′ =

γ√
1 + zu

√
1 + zd

, (22)

where zu ≡ Zu/2πR and zd ≡ Zd/2πR. However, we expect that zu and zd are small, since they

are suppressed by the length of the extra dimension. We have checked that the inclusion of the

brane kinetic terms does not change the qualitative feature of the analysis in this sub-section

unless they are large, zu, zd
>∼ O(1).

2.3 Quarks and leptons in the bulk

In this sub-section, we consider the case where the quarks and leptons are put in the bulk, rather

than on the y = 0 brane. In this case, we have to introduce hypermultiplets Qj ,Uj,Dj,Lj and Ej
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in the 5d bulk, where j = 1, 2, 3 represents the generation index. Each of them is decomposed,

under 4dN = 1 supersymmetry, into two chiral superfields as (Qj , Q
c
j), (Uj , U

c
j ), (Dj, D

c
j), (Lj, L

c
j)

and (Ej, E
c
j ) where conjugated fields have conjugate transformations under the gauge group.

The boundary conditions under the orbifolding are given as follows. We must require that

the orbifolding yields three light generations of chiral matter. This uniquely determines that,

under y ↔ −y, Qj ’s obey

(

Q1 Q2 Q3

Qc†
1 Qc†

2 Qc†
3

)

(xµ,−y) =

(

Q1 Q2 Q3

−Qc†
1 −Qc†

2 −Qc†
3

)

(xµ, y). (23)

and also that, under y ↔ y + 2πR

(

q̃1 q̃2 q̃3
q̃c†
1 q̃c†

2 q̃c†
3

)

(xµ, y + 2πR) = e−2πiασ2

(

q̃1 q̃2 q̃3
q̃c†
1 q̃c†

2 q̃c†
3

)

(xµ, y), (24)

(

q1 q2 q3
qc†
1 qc†

2 qc†
3

)

(xµ, y + 2πR) =

(

q1 q2 q3
qc†
1 qc†

2 qc†
3

)

(xµ, y), (25)

where Qj = (q̃j, qj) and Qc
j = (q̃c

j , q
c
j). The uniqueness of this choice is non-trivial. A twisting of

the fields in flavor space under y ↔ y+ 2πR is only consistent if the fields have opposite parities

under y ↔ −y [10]. However, having opposite parities yields vector-like matter at low energy,

as can be seen from the Higgs case. The other fields, Uj ,Dj,Lj and Ej, must obey the same

boundary conditions. With these boundary conditions, the matter content below 1/R scale is

exactly the three generations of quark and lepton chiral superfields.

The mode expansions for the squarks are given by

(

q̃j
q̃c†
j

)

(xµ, y) =
∞
∑

n=0

e−iασ2y/R

(

q̃jn cos[ny/R]

q̃c†
jn sin[ny/R]

)

. (26)

The expansions for the quarks are straightforward (corresponding to α = 0 in the above equation).

Identifying n = 0 modes with the usual squarks (and sleptons), we obtain the following soft

supersymmetry-breaking masses at the 1/R scale:

L = −α2

R2

3
∑

j=1

(

|q̃j|2 + |ũj|2 + |d̃j|2 + |l̃j |2 + |ẽj|2
)

, (27)

where squark and slepton fields are canonically normalized in 4d. We find that the universal

scalar mass, α/R, is generated. This degeneracy among various squark and slepton masses is

lifted by the presence of the brane-localized kinetic terms. However, we expect that these terms

are small due to the volume suppression from the extra dimension, so that these theories offer

an interesting way to solve the supersymmetric flavor problem.
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As in the case of brane matter, the Yukawa couplings Eq. (12) are introduced on the y = 0

brane. Then, below the compactification scale 1/R, the theory reduces to the minimal super-

symmetric standard model with

m1/2 = α̂, m2
hu,hd

= m2
q̃,ũ,d̃,l̃,ẽ

= α̂2, A = −3α̂, (28)

µ = γ̂, µB = −2α̂γ̂, (29)

Again, there are neither grand unified relations among the gaugino masses (unless 1/R is close

to the unification scale) nor supersymmetric flavor or CP problems.

In contrast to the case of brane matter, squarks and sleptons have non-vanishing soft masses

at the compactification scale and the A parameter is very large. This substantially changes

the numerical results for successful electroweak symmetry breaking, although the qualitative

behavior is the same: the allowed parameter region is a line in the (1/R, tanβ) plane with the

two quantities positively correlated. There are both a low 1/R region, having c close to unity and

large B, and a high 1/R region, with c not near unity and smaller values for B. In the low 1/R

region, the values for 1/R are much lower than those in the brane matter case, since the non-

vanishing top squark masses at the compactification scale and the large A parameter lead to large

radiative corrections for the Higgs mass, so that c ≃ 1 is obtained with a shorter running distance.

Successful electroweak symmetry breaking occurs in this region with 700 GeV <∼ 1/R <∼ 2 TeV,

with 2 <∼ tan β <∼ 20. The second region is larger than before, since small B is obtained with

less running due to the larger value for A. This region extends from (1/R, tanβ) ∼ (107 GeV, 2)

to (1/R, tanβ) ∼ (1016 GeV, 4). We conclude that there is now a preferred region: 1/R can be

identified with the unification scale, and the resulting value for tan β is sufficiently large that the

Higgs mass bound does not require the squarks to be very heavy, so that electroweak symmetry

breaking occurs with little fine tuning. Finally we note that there is a small third region having

small B giving (1/R, tanβ) ∼ (1016 GeV, 30), so that the b-quark Yukawa coupling is sufficiently

large to affect the scaling of the Higgs mass parameters.

2.4 Alternative sources for µ

So far in this paper we have assumed that both supersymmetry breaking and GH breaking arise

from boundary conditions at the scale 1/R. Here we comment briefly on alternative sources for µ,

while preserving supersymmetry breaking from the boundary condition parameter α. If µ arises

from physics at shorter distances than 1/R, then it will appear in the five dimensional theory as

a brane localized operator δ(y)µH1H
c
2. In this case the compactification leads to B = −2α̂ at the

scale 1/R, so that the regions for successful electroweak symmetry breaking are precisely those

discussed in the previous two sub-sections. However, if µ is generated in the four dimensional

effective theory below 1/R, then other values of B will occur in general, changing the conditions

for electroweak symmetry breaking.
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As an example of low scale µ generation, we consider a theory which is similar to the next-

to-minimal supersymmetric standard model. We introduce a singlet chiral superfield S on the

y = 0 brane and couple it with the Higgs fields as

S =
∫

d4x dy δ(y)

[

∫

d2θ

(

λSH1H
c
2 +

k

3
S3

)

+ h.c.

]

. (30)

A tree level µ parameter may be forbidden by anR or discrete Z3 symmetry, or by the requirement

that the superpotential not contain any mass parameter. At the compactification scale, Aλ =

−2α̂ and Ak = m2
s = 0. The Higgs fields have soft supersymmetry-breaking masses at the

compactification scale, so that renormalization group scaling below 1/R drives m2
s negative. The

resulting vacuum expectation values for the scalar and F components of S generate effective

µ and µB parameters, respectively. Since these expectation values depend on the coupling

constants λ and k, the µ and µB parameters are essentially free parameters in this model.

Therefore, we can evade the stringent constraints on (1/R, tanβ) derived in the previous sub-

sections. However, supersymmetry breaking is still determined by the single parameter α̂, so

that the tight predictions for squark, slepton and gaugino masses still apply.

3 Embedding into SU(5)

In this section, we construct 5d SU(5) theories which reduce to the softly broken minimal su-

persymmetric standard model at low energies. The structure of the theories is similar to the 5d

SU(5) model discussed in Refs. [11, 12]. However, the orbifold boundary conditions are modified

using U(1)R and U(1)H , giving simultaneous breakings of both supersymmetry and SU(5) gauge

symmetry from a single orbifolding.

3.1 The model

We consider a 5d SU(5) gauge theory compactified on the S1/Z2 orbifold. The radius of the

fifth dimension is taken to be around the grand unification scale, 1/R ∼ 1016 GeV, as we will see

later. We also introduce two Higgs hypermultiplets, H51
= (H51

, Hc†
51

) and H52
= (H52

, Hc†
52

), in

the bulk, each transforming as a fundamental representation of SU(5).

What accomplishes the SU(5) breaking? We impose that the gauge and Higgs fields transform

as V → PVP−1 and H51,2
→ PH51,2

under y → y+2πR. Here, P is a diagonal matrix acting on

the index of the fundamental representation, P = diag(−,−,−,+,+). This gives masses of order

1/R for the gauge bosons of SU(5)/(SU(3)×SU(2)×U(1)) and for the triplet Higgs fields, so that

the effective field theory below 1/R is that of a 4d, N = 1, SU(3)×SU(2)×U(1) gauge theory with

two Higgs doublets. An important point here is that this boundary conditions are compatible

with those discussed in the previous section which were used to break supersymmetry and give
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the µ term. That is, we can simultaneously impose both SU(5) breaking and supersymmetry

breaking boundary conditions.

To show how the above construction works explicitly, let us label the gauge fields of SU(3)×
SU(2)×U(1) and SU(5)/(SU(3)×SU(2)×U(1)) as V(+) = (V (+),Σ(+)) and V(−) = (V (−),Σ(−)),

respectively. Similarly, we represent the doublet and triplet components of the Higgs hypermul-

tiplets by the superscript (+) and (−), respectively: H5i
→ H(±)

i = (H
(±)
i , H

(±)c†
i ) where i = 1, 2.

Then, the boundary conditions are explicitly represented as follows. Under y ↔ −y, the fields

must satisfy
(

V (±)

Σ(±)

)

(xµ,−y) =

(

V (±)

−Σ(±)

)

(xµ, y), (31)

(

H
(±)
1 H

(±)
2

H
(±)c†
1 H

(±)c†
2

)

(xµ,−y) =

(

H
(±)
1 −H(±)

2

−H(±)c†
1 H

(±)c†
2

)

(xµ, y), (32)

and, under y ↔ y + 2πR, they obey

A(±)M (xµ, y + 2πR) = ±A(±)M (xµ, y), (33)
(

λ(±)

λ′(±)

)

(xµ, y + 2πR) = ± e−2πiασ2

(

λ(±)

λ′(±)

)

(xµ, y), (34)

σ(±)(xµ, y + 2πR) = ±σ(±)(xµ, y), (35)

(

h
(±)
1 h

(±)
2

h
(±)c†
1 h

(±)c†
2

)

(xµ, y + 2πR) = ± e−2πiασ2

(

h
(±)
1 h

(±)
2

h
(±)c†
1 h

(±)c†
2

)

e2πiγσ2(xµ, y), (36)

(

h̃
(±)
1 h̃

(±)
2

h̃
(±)c†
1 h̃

(±)c†
2

)

(xµ, y + 2πR) = ±
(

h̃
(±)
1 h̃

(±)
2

h̃
(±)c†
1 h̃

(±)c†
2

)

e2πiγσ2(xµ, y). (37)

Here, we are considering α ∼ γ ≪ 1 such that α/R ∼ γ/R are around the weak scale.

In the limit α, γ → 0, the above boundary conditions give the following mass spectrum [11].

The fields in the minimal supersymmetric standard model, V (+), H
(+)
1 and H

(+)c
2 , have a tower

with masses given by n/R (n = 0, 1, 2, · · ·); similarly, (n+1/2)/R for V (−),Σ(−), H
(−)
1 , H

(−)c
1 , H

(−)
2

and H
(−)c
2 , and (n + 1)/R for Σ(+), H

(+)c
1 and H

(+)
2 . Therefore, in this limit, we have massless

fields, V (+), H
(+)
1 ≡ Hu and H

(+)c
2 ≡ Hd, which we call quasi zero-modes. Furthermore, since the

broken gauge fields have masses of O(1/R), the compactification scale is of order the unification

scale.

When we turn on tiny non-zero values for α ∼ γ, they perturb the mass spectrum of the

towers by an amount O(α/R ∼ γ/R). In particular, it gives the soft supersymmetry-breaking

masses for the quasi zero-modes and the µ term. Since the boundary conditions for the quasi

zero-modes are the same as those discussed in section 2, the effective 4d Lagrangian for the

supersymmetry and GH breaking interactions below 1/R is given by Eq. (11). This forces us to

take α/R ∼ γ/R around the weak scale, that is α ∼ γ ∼ 10−13.
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Before introducing quarks and leptons into the model, let us note one important difference

between the SU(3) × SU(2) × U(1) model and the present SU(5) model. In the SU(3) ×
SU(2) × U(1) case, the gaugino masses are unified at the compactification scale, so that there

is generically no grand unified relation among them. On the other hand, in the SU(5) case, the

grand unified relation mλSU(3)
/αSU(3) = mλSU(2)

/αSU(2) = mλU(1)
/αU(1) necessarily holds. This

is true even in the presence of SU(5)-violating gauge kinetic terms that can be introduced on

the y = πR brane. The argument is the following. Suppose we have both the bulk gauge

kinetic term, which must be SU(5) symmetric, and the brane-localized gauge kinetic terms at

y = πR, which can have different coefficients for SU(3), SU(2) and U(1). Then, the 4d gauge

couplings ga are given by 1/g2
a = 2πR/g2

5 +1/g2
4,a, where g5 and g2

4,a are the bulk and brane gauge

couplings, respectively, and a runs over SU(3), SU(2) and U(1). Thus these gauge couplings are

not necessarily unified exactly at the compactification scale, although the SU(5)-violating piece

is volume suppressed and small [12]. On the other hand, the gaugino masses mλ,a are given by

mλ,a/g
2
a = (2πR/g2

5)(α/R). This shows that the quantities mλ,a/g
2
a are universal, and thus the

grand unified relation on the gaugino masses holds very precisely.

Let us now discuss the quarks and leptons. As in the case of SU(3) × SU(2) × U(1), we can

introduce them either on the brane or in the bulk. We first consider the case of brane matter, and

defer the case of bulk matter to the next sub-section. To obtain the usual SU(5) understanding

of quark and lepton quantum numbers, we introduce matter chiral superfields T10j
and F5̄j

on

the y = 0 brane, where j = 1, 2, 3 is the generation index. Then, we can write down the SU(5)

symmetric Yukawa couplings on the y = 0 brane [11, 12]2

S =
∫

d4x dy δ(y)





∫

d2θ
3
∑

j,k=1

(

(y1)jkT10j
T10k

H51
+ (y2)jkT10j

F5̄k
Hc

52

)

+ h.c.



 . (38)

With these Yukawa couplings, the theory reduces, below the compactification scale, to the mini-

mal supersymmetric standard model with the soft supersymmetry-breaking parameters (and the

µ parameter) given by Eqs. (13 – 15). Here electroweak symmetry breaking is as before except

now we require 1/R ≈ 1016 GeV so that tan β ≃ 2. The Higgs mass bound is only satisfied for

somewhat heavy squarks, giving some fine tuning in electroweak symmetry breaking.

We finally comment on the phenomenologies of the present model. First of all, the dan-

gerous dimension 5 proton decay operators are not generated by an exchange of the triplet

Higgs multiplets, due to the specific form of the triplet Higgs mass terms [12]. Furthermore,

unwanted tree-level brane operators at y = 0, such as [H51
Hc

52
]θ2 , [T10j

T10k
T10l

F5̄m
]θ2 , [F5̄j

H51
]θ2

and [T10j
F5̄k

F5̄l
]θ2 , are forbidden by imposing U(1)R symmetry on the theory [12]. (In the case

of the non-minimal theory, with the superpotential of Eq. (30), the U(1)R symmetry given in

Ref. [12] is explicitly broken to a Z4,R subgroup, which is still sufficient to forbid these un-

2 These brane interactions are different from those adopted in Ref. [13].
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wanted operators. An alternative way is to consider a different U(1)R symmetry, under which

{H51
, Hc

52
, T10j

, F5̄k
, S} and {Hc

51
, H52

} have charges 2/3 and 4/3, respectively.) This U(1)R

symmetry (or Z4,R) is weakly broken to R-parity subgroup by the orbifold boundary conditions,

so that the gaugino masses and the µ parameter are generated. The value of 1/R is lower than the

conventional grand unification scale ≃ 2× 1016 GeV due to the threshold effect coming from the

KK towers [12, 14]. It predicts a higher rate for the dimension 6 proton decay than in the usual

4d grand unified theories, which might be seen by further running of the Super-Kamiokande ex-

periment or at a next generation proton decay detector [12]. The soft supersymmetry-breaking

masses for the squarks and sleptons are vanishing at the compactification scale, providing a

solution to the supersymmetric flavor problem.

3.2 Matter in the bulk

In this sub-section, we introduce matter in the 5d bulk instead of on the y = 0 brane. One might

naively think that we have only to introduce hypermultiplets T10 and F5̄ for each generation,

to obtain the correct low energy matter content. However, this does not work because of an

automatic “double-triplet splitting” mechanism operating in this setup. Let us, for example,

consider F5̄ = (F5̄(+), F c
5̄
(−)) transforming as F5̄ → F5̄P

−1 under y → y+2πR, where the signs

in the parentheses represent the parities under y → −y. After the orbifolding, this hypermultiplet

gives only one quasi zero-mode, which is the lepton doublet L of the standard model. Thus we

do not obtain the correct matter content, D and L. To evade this problem, we can introduce

another hypermultiplet F ′
5̄

= (F ′
5̄
(+), F ′c

5̄
(−)) which transforms as F ′

5̄
→ −F ′

5̄
P−1 under y →

y+2πR. This additional hypermultiplet gives D of the standard model as a quasi zero-mode, and

completes the standard model matter content. A similar argument applies to the T10 multiplet:

the quasi zero-modes from T10 are U,E, while that from T ′
10

is Q. Therefore, to ensure the

correct low energy matter content, we introduce four hypermultiplets, T10, T ′
10
,F5̄ and F ′

5̄
, for

each generation [12].

We here explicitly show the boundary conditions for the bulk matter fields in the present

model. To do so, we introduce the following notation. We represent U,E/Q components of T10

(and corresponding states of T ′
10

) by the superscripts (+)/(−), respectively. We also denote L

and D components of F5̄ (and corresponding states of F ′
5̄
) by (+) and (−) superscripts. Then,

under y ↔ −y, they subject to
(

T
(±)
10j

T
c(±)†
10j

)

(xµ,−y) =

(

T
(±)
10j

−T c(±)†
10j

)

(xµ, y), (39)

(

T
′(±)
10j

T
′c(±)†
10j

)

(xµ,−y) =

(

T
′(±)
10j

−T ′c(±)†
10j

)

(xµ, y), (40)

where j = 1, 2, 3 represents the generation index. The boundary condition under y ↔ y + 2πR
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is given by

(

φ
(±)
10j

φ
c(±)†
10j

)

(xµ, y + 2πR) = ± e−2πiασ2

(

φ
(±)
10j

φ
c(±)†
10j

)

(xµ, y), (41)

(

φ
′(±)
10j

φ
′c(±)†
10j

)

(xµ, y + 2πR) = ∓ e−2πiασ2

(

φ
′(±)
10j

φ
′c(±)†
10j

)

(xµ, y), (42)

(

ψ
(±)
10j

ψ
c(±)†
10j

)

(xµ, y + 2πR) = ±
(

ψ
(±)
10j

ψ
c(±)†
10j

)

(xµ, y), (43)

(

ψ
′(±)
10j

ψ
′c(±)†
10j

)

(xµ, y + 2πR) = ∓
(

ψ
′(±)
10j

ψ
′c(±)†
10j

)

(xµ, y), (44)

where φ
(±)
10j

and ψ
(±)
10j

(ψ
′(±)
10j

and ψ
′(±)
10j

) are the scalar and fermion components of T
(±)
10j

(T
′(±)
10j

),

respectively. The same boundary condition also applies to F5̄ and F ′
5̄

fields.

The above boundary conditions precisely give the quarks and leptons in the minimal super-

symmetric standard model. Together with the Yukawa couplings

S =
∫

d4x dy δ(y)

[

∫

d2θ
3
∑

j,k=1

(

(y1
1)jkT10j

T10k
H51

+ (y2
1)jkT10j

T ′
10k

H51
+ (y3

1)jkT
′
10j
T ′

10k
H51

+(y1
2)jkT10j

F5̄k
Hc

52
+ (y2

2)jkT10j
F ′

5̄k
Hc

52
+ (y3

2)jkT
′
10j
F5̄k

Hc
52

+ (y4
2)jkT

′
10j
F ′

5̄k
Hc

52

)

+ h.c.

]

,(45)

the theory reduces to the minimal supersymmetric standard model at low energies. The soft

supersymmetry-breaking parameters (and the µ parameter) at the compactification (≃ unifica-

tion) scale are given by Eqs. (28, 29). Here electroweak symmetry breaking can occur naturally

in this theory with tan β ≃ 4, without the need to make the top squarks very heavy.

We finally discuss the phenomenologies of the model with matters in the bulk. In this case,

the quarks and leptons which would be unified into a single multiplet in the usual 4d grand

unified theories come from different SU(5) multiplets. Specifically, D and L (Q and U,E) come

from different (hyper)multiplets. Therefore, proton decay from broken gauge boson exchange is

absent at leading order [12]. Furthermore, there is no unwanted SU(5) relation among the low

energy Yukawa couplings arising from the interactions given in Eq. (45) [12]. This is reminiscent

of the situation in certain string motivated theories [15]. Nevertheless, the theory still keeps

the desired features of the usual 4d grand unified theory: the quantization of hypercharge and

the unification of the three gauge couplings [12]. Therefore, this type of theory, with matter

in the bulk, preserves (experimentally) desired features of 4d grand unified theories, while not

necessarily having the problematic features, such as proton decay and fermion mass relations.
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4 Conclusions

In this paper we have introduced a new implementation of the boundary condition supersymmetry

breaking mechanism, which allows for a large energy desert in which physics is described by

a 4d effective theory with softly broken supersymmetry, such as the minimal supersymmetric

standard model. This is accomplished by having a boundary condition which mixes components

of superfields in a supersymmetry breaking way by an extremely small angle, α.

In general, we are interested in a higher dimensional supersymmetric field theory which leads

to two Higgs doublet zero-modes where there is an orbifold symmetry with the group element

U = e2πiαT ; T = TR + rTH . (46)

under y → y+2πR. Here, TR is a generator which acts non-trivially within a supermultiplet of the

higher dimensional theory, and TH is a generator which mixes up the two Higgs supermultiplets.

The parameter r is of order unity, so that the generator T of the orbifold symmetry is a generic

linear combination of TR and TH . In 5d, there is a unique choice for these generators, and hence

a unique result for the form of the supersymmetry breaking and GH breaking operators that

result in the low energy 4d effective theory, as shown in Eq. (11), where γ = rα. This single

orbifold symmetry provides a unified origin for both soft supersymmetry-breaking parameters

and the µ parameter. The result of Eq. (11) is rather robust and relies on there being two light

Higgs doublets, as required for gauge coupling unification. It does not change if there are other

heavy Higgs hypermultiplets which are mixed with the light ones at order α by orbifolding. It

is independent of the gauge group and the spacetime structure of matter, as shown explicitly by

our models with gauge groups SU(3) × SU(2) × U(1) and SU(5), with matter in the bulk or

on the brane. The soft supersymmetry breaking interactions of squarks and sleptons do depend

on whether matter is on the brane or in the bulk. For the brane case, the squarks and sleptons

are massless with A = −α/R, Eq. (14), while in the bulk case the squarks and sleptons have

degenerate mass-squareds α2/R2 and A = −3α/R, Eq. (28).

We have shown that this constrained form for the soft operators leads to successful electroweak

symmetry breaking only in certain regions of parameter space. For brane matter, (1/R, tanβ)

lie on a curve between (2 × 106 GeV, 2) and (6 × 107 GeV, 20); also, a large compactification

scale 1/R >∼ 1014 GeV is allowed for low values of tanβ ≃ 2. For bulk matter, the corresponding

regions with successful electroweak symmetry breaking are (700 GeV, 2) to (2 TeV, 20), and, for

larger compactification scales (107 GeV, 2) to (1016 GeV, 4). The unified theory prefers the case

of bulk matter, since it gives electroweak symmetry breaking with less fine tuning.

Our supersymmetry breaking mechanism solves both the supersymmetric flavor and CP prob-

lems — by construction the phases α and γ are real and flavor conserving. If matter is on the

brane, the squark and slepton masses arise from renormalization group scaling with flavor blind

gauge interactions. With matter in the bulk, the orbifold symmetries necessarily lead to squark
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and slepton mass matrices proportional to the unit matrix. Non-trivial flavor mixing boundary

conditions are inconsistent. However, flavor and CP violating scalar mass matrices could result

in the case of bulk matter with large brane kinetic terms.

With an SU(5) gauge group, the orbifold symmetry can be taken to be

U = e2πiαT ⊗ P (47)

where P is the parity (−,−,−,+,+) acting on the 5 of SU(5). This single orbifold symmetry now

breaks SU(5) to the standard model gauge group, as well as breaking GH and supersymmetry. We

have explicitly constructed the unique 5d theory which accomplishes this — the only variations

being the location of the matter multiplets.

In this viewpoint the hierarchy problem is transformed to the question of the origin of the

small non-zero value of the orbifold mixing angle α. The spacetime geometry is not fixed, but

is ultimately controlled by certain background fields, and the solution to the hierarchy problem

must be sought in the dynamics of these fields.
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